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I. INTRODUCTION

The concepts of metrics and distances are fundamental in problems
of statistical inference and in practical applications to study affini-

W.

ties among a given set of populations. A statistical model is specified

by a family of probability distributions, described by a set of continu-

ous parameters known as the parameter space. This model possesses some

geometrical properties which are induced by the local information struc-

tures of the distributions. In particular, the Fisher information matrix

of the given family of distributions gives rise to a Riemannian metric

4 over the parameter space, whose geodesic distance, known as the Rao dis-

tance, plays a major role in multivariate statistical techniques. For

the family of multivariate normal distributions with fixed shape but

varying locations, this distance reduces to the well-known Mahalanobis

distance. -4e'referrto Burbea [I and Burbea and RaoJf3,4], and-the

references therein, for more details on these concepts and their deri-

vations.

An interesting statistical model is provided by the family of

elliptic distributions whose density functions have elliptical contours

and which include the multivariate normal distributions as a subfamily.
associatewt aneip

In this paper we-study-the information m ric associated with an ellip-

tic family whose shape varies linearly. -It will be shown that this met-

ric is essentially the Poincare' hyperbolic metric on a half-space, and

that the resulting Rao distance is an increasing hyperbolic function ot

the generalized Mahalanobis distance. This will enable us to construct

new statistical tests and to recover the recent results of Mitchell and

Krzanowski [6] as a special case of our setting.

! a.
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2. INFORMATIE GEOMETRY OF ELLIPTIC DISTRIBUTIONS

We begin with a brief description of the general informative geom-

etry that is induced by a paraetric family Pe = {p(.[1): a e o} of

distributions for a randomvariable X, possibly vector-valued, with a

sample space 1. Here e is the parameter space, a manifold embedded in

: tm, with points 3 e e coordinated by e = [1l, ..., emI", and satisfying

jthe ordinary conditions of regular estimation. The elements p(.Io) of

Pe are probability distribution functions
",pixie) - dP(xle)/dti(x), (x e 1 , e e 0)

where v is a fixed positive a-finite additive measure, defined on a

a-algebra of the subsets of 1. In particular,

fp(.Ie)d = 1, (e e e).

IIt is also issumed that for a fixed e e e, the m functions

t jl.8) - alogp(.oe , (j = I,...%m)

are linearly independent and are in L2(p(.Ie)du). This, by the Cauchy-

Schwarz inequality, implies that the elements

jk( ) - E {tj(.e)tk(.Ie)} (j,k = 1,... ,m)

of the information matrix G(e) are all finite, and that G(o) is (strictly)

positive-definite. It also implies that (tj(.Ie)}, j = l,...,m, forms a

i! basis for the tangent space T at e e o, and, moreover that
0

ds2 (e) = do G(B)de

, is a Rlemannian metric on 0; called the inforzti,',t metric of t:.e family

V.. "This metric is Invariant under the admissible transformations of

the parameters as well as of the random variables, and the differential

geometry associated with it is called infor-ntitve geom-'try. The latter

includes the evaluations of curvatures , geodesic curves and geodesic

U
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distances. The geodesic distance S(e( ), 0(2) between the points

e and 8(2) of 9 is known as the Rao diatance between p(.I e(1)) and

P(.e (2)) of For a more detailed account, we refer to Burbea [I]

;,, (see also Burbea [2], Burbea and Rao [3,4], Oiler [8], and Oiler and

Cuadras [9]). We also note, in passing, that in matrix-notation, G(e)

may also be expressed as

G(e) = Eet:6 log P(-)1 log

or as

G(8) - EeO{IH(.le))

where 1(.1e) - [Ll(.Ie), tm(1)]

An n-dimensional random variable X is said to have an eZZiptic

distribution with parameters g = [i.. 11 n] and Z, an nxn (strictly)

positive-definite matrix, if its density is of the form

p(xl , Z) - 1 F{(x- p)tzf1 (x-v)) (2.1)
,n/2 IZl 1

where F is a nonnegative function on IR+= (0,-) satisfying

f rn/2"F(r)dr - 1. (2.2)
0

In this case the sample space I is Rn wyth dP = dv, the usual volume

Lebesgue measure of IRn. The parameter space e is now the n(n +3)/2-

dimensional manifold RnxP(n, R), where P(n, R) is the set of all nxn

positive-definite matrices over R.

The vector P and the matrix Z for the point (w,r) in a may be ex-

pressed in term; of E(X) and Cov(X), provided the latter exist. In fact,

the characteristic function *F(t) - E(eit 'X) of the above p(.JI. r) may

@4
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be expressed as
_-it' Ftit

"Frt) Et (2.3)

where

AF(S) r/ 2 F(r)K (rs)dr (s e R)

with

K (s) --2'J (sl1/2)/s v /2  = _ (s)m

vn= 4 4mr(m+v+l )

and where J is the ordinary Bessel function of order v. Fnrmally,

therefore,

E(X) 01- It

and

E xxt) - t*t .2 

lt

•EX fF t t t=O"

This gives E(X) and E(XXt) = u + + CFr , where

CF -2A(O) rn/2F(r)dr (2.4)

and hence Cov(X) cFr. In particular, E(X) exists if and only if

0orn/2" F(r)dr <-, and Cov(X) exists if and only if forn/2 F(r)dr -,

in which case 0 < cF < -. A normlal distribution N (.1,, r) is an example

. of an elliptic distribution with

F(s)" 1 e-s/2 AF(S) = es /2, c,. i.
2n/2r(n/2)F

Other basic properties of elliptic distributions have been obtained by

Kelker [5] and are summarized in Muirhead [7, pp.32-40].

.214
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We now turn to the information matrix G F(U,) of the elliptic

distribution (2.1). In this paper, however, we confine our attention

to a submanifold of P(n,]R) consisting of the cone C(rO ) = {a20: a > 01

where z0 is a fixed element of P(n, ii). The resulting parameter spice

is now RnxC(zO ) which is an (n+1)-dimensional submanifold of the full

n(n+ 3)/2-dimensional manifold InxP(n, R). Note, however, that the

former is not a geodesic submanifold, with respect to the information

metric dotGF(o)de, e - (vz), of the lattcr. A slight generaiization

is obtained by replacing u in (2.1) with v = AS where 8 = m
] +

is a vector in R m and A is a fixed nxm matrix of rank m <_ n. In par-

ticular, A A Is a nonsingular mxm matrix, and the density in (2.1) is

of the form

p(Xo, ) (n/l)jZ1l/2O-nFfa' 2 (x -A S) A (2.5)

where F Is a function from F+into R+, satisfying (2.2). In this case,

x is in the sample space Rn and (S,a) is in the parameter space

F m+l = m xI which is a half-space in ]m+ 1

In the setting of m = n, A = I (the identity matrix of Rn) and

a 1 1, the informative geometry mf the distribution i" (2.5), witil in

the parameter space pn ,was studied by "itchell and r:. anowski [6]. The

analysis in this paper will enable us t- rtcover the -sults in the

setting of [6] as a special case of our more genera, setting.
To find the information matrix G ) - of P(', a)

(8,C)= :z0
in (2.5), we shall assume, in addition to (2.2". that is also in

C 1 (]R+) with

10 rn/ 2 F(r){(ZF)(r)1 2dr < (2.6)
,¢-
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and

0 Irn/2+1F(r){(ZF)(r) 
2dr < (2.7)

": 0

where £F = F'/F is the logarithmic derivative of F. Then, for

p p(18, a), G =G(B) d E= (B,o) we have

G = r1(2.8)G; LG 21 G 22]

where

CI1 a E{-L log p -IT log P),

G12 = G = Ef-L log p - ]oq p)

2and

G = E{- log p -L log p).

Later, in Section 4, we shall shew that conditions (2.2) and (2.6)-(2.7)

guarantee the finiteness of the matrices Gik (1 < J, k < 2) and the

(strict) positive-definiteness of the information matrix G. Moreover,

Iwe shall also show that, in fact

c= aaG = 0, A, = ba2  (2.9)
l. 12 G1 2 1 0 G22

Iwhere

a = rn/2F(r){(£F)(r)}2dr

nd and

b r (n/2 n + 2r(XF)(r))2F(r)dr.

10
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In particular, 0 < a, b <

To find the information metric ds2 of P('IB, a), we consider the

orthogonal diagonalization

VDV' = AtIA
0

of the m-m positive-definite matrix Atr-l A = (r-I/ 2A)t(zlI/ 2A). Here

V is a mxm orthogonal matrix and D = diag[xl , ...,A with A > 0

(j = 1,...,m). Then the linear change of parameters

[ I  . it = . mTDI/2vt, em+=

constitutes a diffeomorphism (s,a)"o =  5 envoi) of the parameter space
m+l 1/O2Th

AM+ onto itself with the Jacobian (ab-l) m / 2 (X1 X"" 0.I/ h

Jacobian-matrix of the inverse of this transformation is

II

and hence the information matrix G(e) in the new coordinates e

[e1  S em a, I  is

saG(e) = JGJ = (-s

w10)) It+ fls that eth manrif of tei The information metric is
[ .~~ weeI l isheiettmarxo m+l. 2

ds2(a) = do G(o)da I (d (2.10

which Is, effectively, the Poincae" hyperbolic metric of the upper half-

space an+ = ([Ol . 1. e : e 1  0 O} (see, for example, Wolf

[10]). It follows that the manifold of the family of distributions p(.le) in



I ~ -.. ,.

9

e"" "2m+l
(2.5), 8 e R+, IS isoopic with a constant negative Riemannian

curvature

VIn particular, for any two points on this hyperbolic manifold, there

exists one and only one geodesic line joining the two points.

The equations of the geodesics of the above information metric,

in terms of its arc-length parameters, are found to be

" = FC- 2 Bk tanh( s + e) + 0k, (k

+ = C" I sech(-L + E),

where c, Bk and 0k (k = l,..,m) are real constants of integration,

and

" C b k BB'21 1/2

' ". or C = -, Inwhich case ek - k (k - l"".m) and °m+l 0. Note that

since

D 2 + 82 C-
k ( kOk)• -... ~k=l m I =

the above geodesics are semi-circles of the upper half-space Rm + , with

center (D, ... D , 0) and radius C" 1, and are orthogonal to the hyper-

surfaces em+ 1  > 0).

The geodesic distance or the Rao distance 012 between two points

80'.'. e(1) (-(1) e(1)) and 0(2) (;(2) 0(2) ofRm+lITP 12 % 2vE tah- 1  ~(.1
1 2

'. %" •

I.. '.,
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where

I(2) b(G~j- (2 ) )/2., ~~~~~M 1i() ()l M+ 0 .()1
12 ,( ;(2) 1 1 .,2 + b(e1 ,) +'e(2))2., 12 II(1 Y()II2 + "'m+1 M+1

Thus, using the old coordinates (B,a) of IR'+l, this Rao distance 012

between p(I8(1 ), a,) and P(.IB(2 ), 02) admits the same form with

2 a(( 1) - (2)) rAtA0 (1 ) '(2)) + b( 1 - a2)2 1/2 (2.12)

12 - tAtl-IA~sl +ba +.
a(( 1) ()(1) + b(Ol+o

.

A,!

t#.0

4.O,____
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3. MAHALANOBIS DISTANCE

If a in the distributions (2.5) is fixed, say a o0 > 0, then the

parameter space of the distributions is restricted to IRm . In this case

the information metric in (2.10) reduces to the euclidean metric on Fm

ds2(§) * ba5
2 j (0% )2,

"P " j1l

and thus the resulting Rao distance 5,2 between P(.8(l) , oO) and

. P(.I( 2 ) , a0 ), in the manifold ]Rmx(o), is

"' ! }1/2

- 0 A(() 0 ( (3.1)

Since, however, 3Zmxao } is clearly not a geodesic submanifold with re-
spect to the nonreduced metric ds (e), of IR I  R * x]+, a12 must exceedR the nonreduced Rao distance 12 between p(.fB(l ), o0 ) and P(.l6( 2), 0).

Ir the general case that a is not fixed, we introduce a modifica-

tion of aI2 in the form

d12 * aoY"v~(B(l) 8 (2) )t~tEOA(,(,) - (2))} / 32

which we call the Mahalanobie generaZized-distance between p(.6(1), a,)

and P(18(2), a,). This quantity reduces to Pl2 when a1 ,2 a0 and

is directly relat.d to the catssical Maha.anobia distance M12 between

p(,1( 1). o) and P(.(( 2)0 a0 ), provided that Cov(X) of the distribu-

tion p(j, ao) in (2.5) exists. That is, besides (2.2) and (2.6)-(2.7),

we must also assume that the quantity cF, defined In (2.4), satisfies

0 > CF -. In this case, Cov(X) W cFaO 0  and 12 " cFMI1" The re-

lationship between the Mahalanobis generalized-distance dI and the Rao12
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distance "12 can be read off from (2.1l)-(2.12) and (3.2). This, after

sone Plgebraic manipulations, gives

P12I ' / ih 2+ba /2
1212 

In particular, 012 is an increasing function of dl2 and

"I 1 22aO } /2
P12 . (d 2 + 2 12

{12 +bO 02) /12

We therefore conclude that the statistical tests based on eithe.- r12 or

on d12 are completely equivalent when v7 - °2;-2I = const. In particu-

lar, this is so when o, and 02 are fixed. Moreover, when a, - 2 -00

d12 reduces to 12 and we obtain the symmetric relationships

d12 g 2 / " sinh1(U12/2vS)

and

012 2/b sinh(p1,/2vS), (01 2 o)

Especially, p12 is an increasing function of ;12 and, of course,

12 1"Moreover, ;12 when 012 << 2-T.

When Cov(X) of p(-18, a exists, the reduced Rao distance in

. (3.1) was also discussed in Mitchell a Krzanowski [6] in the special

setting of m a n, A = I and a0 1. The discussion in [6], however,

does not contain the above relationships between 12 and the fuller Rao

distance 012.

.5:

r0
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4. EVALUATIONS OF INTEGRALS

This section is devoted to the evaluations of the integrals appear-

ing in this paper that are associated with the elliptic distribution

(2.1) and its information matrix G in (2.8). It may therefore be re-

garded as an appendix to this paper.

To evaluate an integral of the form f iRnfdv, we use polar coordin-

ates

f f(x)dv(x) r n-l  f(rx)do(x)fdr (4.1): I n  0 Sn

pfl n

where dv is the volume Lebesgue measure of IRn, S = {x e Rn: 1x4 = If
, .. 

#

is the unit sphere of IRn , and do is its surface measure.

For x = Cxl, ... ,Xn]t e Rn and a = [al, ... ,n] + e ,, We use

the multtnomial notation of x3 = xa1 ... x n and i = + "In la + " cn'

We also define a function 6: IR n o,l} by letting 6(x) = I if x e in

and 6(x) = 0 if x e n\ 1+.

LEMMA 4.1. Let a tli "'n e in. Thon

, i" n

is X'dc(x) 6(/) =r( + l)/2) /n((n+ HI/Z)
Sn  JZl

In part tcular,

a(Sn) fdo 2,n/ 2/r(n/2).
S n

Proof. Using (4.1), we find that

S xa e 'x 12dv(x) r f r I '1ovle-r2  xda(x) dr"'"IR n  0 (fS n

r (n.r(l) x1 do(Y),

r Sn
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and thus

S X~da(x) = 2 f xae"Ix It 2dv(x)iSn

te dt.

If for some 1 < j < n, aj is odd, then the above product vanishes.

Otherwise,

2 n oL 2
Jxda(x) " 2 j 2 Jt 'e't dt• n  (- )jl 0O

2 r(c +

and the lemma follows.

This lemma, together with (4.1), will enable us to prove that

p(,Iu, E) In (2.1) is a probability distribution, provided (2.2) is

satisfied. Indeed, letting y - Z -1/2 (x-0. we have

f p(xlu, :)dv(x) rn42 F(l1 yj12)dv(y)
n r "n/2 n

• r n"2)rn-'IF(r 2)( do)dr':: ln/ jO f d
Sn

S2f rn'lF(r 2 )dr

of rnl 2 lF(r)dr 1.

0

Similarly, to prove (2.3), we observe that
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#F(t) eitt'E(e it(l-V)

and so, using y : (x-/ ) and s /2

Ele it.(X- f)) e et'(x" U) p(xlu' z)dv(x)

I n

n: ei.Y2 ~ l)dv(y).

Rn

But, using (4.1) and Lemma 4.1 again, we obtain the well-known formula,

6 eiS'YF(Ily l2)dv(y) - (2r)n2 lsI(n-2)/2 f"rn/2F(r2 l2lsllr)dr"n 20 / ~ )Jnl2-i '

00
and so

E(eit.(X-u)) a 2r(n/2)JrnlIF(r2)Kn/2-1(r21IsII2)dr

0

a r(n/2)f rn/ 2"IF(r)Kn/l-(rIsIs 2)dr

0

AF(Isll 2) AF(ttZt),

and (2.3) follows.

We now consider the distribution p(IB, o) in (2.5), under the

assumptions (2.2) and (2.6)-(2.7). To evaluate the information matrix G

in (2.8), we calculate the matrices Gik (I j, k < 2) with the aim of

nroving (2.g). 4P let Z - o-a-rl/2(x. Ae), to find

E .2 8n {((F) 2 lZItZ)BZ

n 12 G21  17BtE(a2F)(IZi2 +)2!1Z 1l2(U)(11Z1 2 ))Z)

and
G22 " E (n + 211 Z (:F) IZli) }

6I
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where B = ro 112A. We use (4.1) and Lemma 4.1 tn compute the elements

of the nxn matrix E{(SF) 2(IIZII2)ZtZ). The (lj)-element is then

rn2) 22n (XF) (11 )z z )zi zj Il ) dv (z )

IR

n, 0r (.'F)2(r 2)F(rz)( Z d(z))dr

26 lwn'l)/2r(3/2L rfr,/2 r 1+(F)
ij r(n/2+1- rn+l ( F)2(r2)F(r2)dr

0

r n12F(r){(()(r)i2dr a1ja/4,

0

and thus G a&'2AtEIA as in (2.9).lin0

Similarly,

E{(n.21ZzI 2(ZF)(lZll2)) 2 )

Sn. lf( rnl(n+2r2(ZF)(r2))2F(r2)( (do)dr
0 

Sn

fI r n/2-1(n+2r(ZF)(r)l2dr b,
0

an ,o G.22 bo"2 as in (2.9).

Finally, the nxl expection-matrix appearing in the m~l matix G12

Is finite by virtue of the Cauchy-Schwarz inequality and by the finite-

ness of GI and G2 2. It follows from (4.1) and Lemma 4.1 that

G - O as In (2.9).12 " 21

. . .. i ~ l m l lt I I m l ~ l I N m l , m l N l l . m l o m m a , m b m m ~ ml ~ ip N m ,l
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